UNIT PERFORMANCE, ASSEMBLY, & OFF-SHELF KIT-OF-PARTS

The design is centered around a kit of parts packaged as a single, reconfigurable "unit" that delivers fresh water and power. This unit can stand alone or be configured into custom arrays. PV panels are attached to butterfly roofs sloped to direct rainwater into an integrated cylindrical catchment cistern. Standard off-the-shelf, turn-key products were chosen for easy sourcing, pricing, and maintenance. The exact components specified are examples and can be swapped out for similar products based on regional availability. Each individual unit is designed to be constructed through a set of off-the-shelf building structural members. Each unit can a packaged kit-of-parts, requiring minimal to no larger-examples and can be swapped out for similar products based on regional availability. PROVIDING CLEAN + FILTERED WATER

ELECTRICITY PRODUCTION ESTIMATES USING SPEC PANEL AND COMPARING OPTIMIZED PV FARM BASELINE TO SITED PROJECT DESIGN ITERATIONS (CLIMATE FILE: Yasawa-i-Rara, 16.70°S, 177.58°E)

1. SAMPLE PANEL USED	3. SINGLE PANEL TESTS				4. SHADING STUDIES AND ARRAY MODULE TESTS					5. FULL INSTALLATION ITERATIO						
SUNGOLD 370W Mono PERC (UL 61730)		Facing	0	kWh/yr %		Description	kWh	/yr		COMPARE		Arrow Description	Facing	SA	Ī	
efficiency	20	%		10 658 99.1%		99.1%	Description	No shade Sha		S/NS %	NS %	S %	Array Description	Facing	(m²)	I
peak output	370	W	N	20	664	100.0%	North 17°	2,893	2,858	98.8%	100%	100%	Baseline PV farm	North 17°	517	I
area = l (1.6) x w (1.13)	1.80	m ²	30 653		98.3%	North 3°	2,806	2,793	99.5%	97%	98%	SunWell Design baseline design	varies	517	I	
height	35	mm	S	10	605	91.1%	Butterfly N17°, S3°	2,813	2,796	99.4%	97%	98%	SunWell baseline flattened	N/A (0°)	517	1
weight	19	kg	5	20	560	84.3%	Butterfly NS3°	2,771	2,761	99.6%	96%	97%	SunWell custom angle iteration	varies	517	1
2. PROJECT PANEL TAK	EOFF	EOFF		10	622	93.7%	Butterfly EW 3° 2,771 2,761 99.6% 96% 97%					Г			1	
1 "tree" (full module) =	le) = 28.8 sm 20		598	90.1%	Butterfly NS17° 2,694 2,678 99.4% 93% 94%											
16 panels	296	kg	\ M /	10	642	96.7%	Butterfly EW17°	2,702	2,684	99.3%	93%	94%			××	
Full design (19 "trees") =	547	sm		20	635	95.6%	Flat	2,770	2,761	99.7%	96%	97%		XX	\sim	<
304 panels	5,624	kg	flat	0	636	95.8%	Shade from top	po consider	ed, tall tre	ees may fu	urther sha	de		\leq	\leq	<
		63.23in Gibbs Bildency Mono solar cell with Tempered Glass								43° 43° 43° 43° 43° 43° 43° 43°	baseline PV farm with optimized	orientation (1	17°N) prod			
370W high-efficiency panels						shading tests show terrain has little effect on solar insolation on site										
			tests run to understand PV potential of butterfly configuration					custom angle design = 97% PV p	production of a	optimized						

7. PROJECT DESIGN PV PRODUCTION

8. PR(
9. CISTE	RN SPECS		10. 1	10NTHI			
diameter	diameter 1.63 m			on area ((m²)	38	
height	2.03	m	Mon	mm	m ³	liters	
fill %	0.9	%	Jan	236	9	8,976	K
Volumo	4.22	m ³	Feb	300	11	11,389	
votunie	4,215	l	Mar	274	10	10,424	
actual fill	3,794	l	Apr	254	10	9,652	
11. PROJ	ECT TOTALS	May	236	9	8,976	Collection area = PV +	
Mo	Jun	140	5	5,309	280 LAGI Precipitation		
min	64,186		Jul	91	3	3,475	260
max	216,398	Ľ	Aug	89	3	3,378	220 - 200 - 180 -
An	Sep	89	3	3,378	160 - 140 - 130		
1 "tree"	80,691		Oct	112	4	4,247	
PROJECT	1 500 104	l	Nov	117	4	4,440	monthly values taken f
DESIGN	1,533,124		Dec	185	7	7,046	FJI_WE_Yasawa-i-Rara.

PERFORMANCE INFORMATION See chart for related graphics, specs and simulation outputs

SAMPLE PANEL: A commercially available turn-key PV production kit was chosen that includes a combined charge controller/inverter and batteries. This allows for the most realistic simulation of performance on-site and quick/reliable pricing estimation.	
PANEL TAKE-OFF: Core "tree" module produces electricity and collects water. Each "tree" is customizable to meet particular installation goals. For maximum PV production, a tree would be outfitted with 16 panels. The competition design includes 19 such "trees" for a production area of 547 m2.	
SINGLE PANEL TESTS: Single panel simulations were run to determine the relative production	

for different orientations. Optimal at project latitude is a north facing panel angled 17-20° which produces about 660 kWh/yr. In simulations with panels facing N,S,E,W and angled 10 and 20 degrees, performance ranged between 84 - 97% of optimal with flat panels at 96%.

 MODELER: A simple Excel modeler was created to calculate Raincatchment volume. The tool can be used when planning specific installations of the design module.
CISTERN SPECS: Inputs allow for adjustment of cistern sizing, collection area, and "fill percentage" which adjusts external cistern dimensions for wall thickness and internal "headroom".
MONTHLY COLLECTION: Values are taken from the indicated climate file and thus are averages representative of a typical year. The "panel collection area" is the surface area of a typical butterfly roof and single attached fabric section that spans between "tree" modules. SHADING STUDIES AND ARRAY MODULE TESTS: Module PV arrays are configured as butterfly roofs to direct rainwater to an integrated cistern. Testing of varied angle combinations showed a wide range with acceptable production: between 92 and 97% of optimal. This is enabled by high year round solar position on site due to low latitude. In addition, shade studies determined that the island topography only minimally shades the site with a resulting reduction in PV production of 2% or less over a simulated flat (unshaded) site at the same location. **FULL INSTALLATION ITERATION TESTS:** A series of simulations were run comparing an optimized PV farm (spec panels facing north and angled 17°) to Team design iterations. An initial design configured without considering efficiency produced 94% of the PV farm output. Modules are designed to allow for custom angles on each side of the butterfly, so in the final design arrays were customized to produce

97% of the optimal. This illustrates that the "tree" module can be adjusted so that any desired grouping

NYC COMPARISON: Tests of the competition design set on an open site at 40°N latitude were run. The optimized PV farm faced S with panels inclined 35°. The project design was rotated and optimized for the higher latitude, but iteration produced only 85 – 87% of optimal for NYC. This illustrates how the design is well-tuned to the competition project site.

PV PRODUCTION OF THE PROJECT DESIGN: As configured, the project design has a 112kW name plate capacity, well above the 75kW project required minimum. Based on detailed simulations, the modeled panel configuration had 517m2 for a yearly production of 183,000 kWh/yr or 355kWh/m2/yr. Using an estimate for a typical household on the island using ±3,000kWh/yr, each "tree" could power about 3 households, several cars, or 30,000 liters of community freezer space.

11. PROJECT TOTALS: 80kl/yr will pass through each module cistern for an annual project collection potential of 1.5 million liters. Based on the season and amount of direct access to cistern fill, there wi be varying amounts of overflow available. Two potential uses could be drip irrigation and/or feeding

aquaponic tanks. PV power from the same "tree" could power a DC pump to aerate aquaponic system

