

Night view of the entrance - the diffused light from the module

View from the other end of the water channel running through the site, mangroves along

the bed, to prevent from soil erosion

WATER DISTRIBUTION SYSTEM

SOLAR ENERGY DISTRIBUTION SYSTEM

• Area: 1092 sq.m | 91 Modules | 200 W/m² PV Panels

Converts sunlight to DC electricity (~764.4 kWh/day)

Installed at: Base of Tower / PV Control Enclosure

Installed in: Secured, ventilated battery enclosure

Installed at: Centralized inverter room beside batteries

Battery Bank: ~1500 kWh (2-day backup)

Boosts voltage to 11kV for transmission

Medium Voltage Transmission Lines Carries 11kV AC to distribution point

Step-down to 415V (3-phase) / 240V (1-phase)

Installed at: Near or within community to be served

Installed as: Overhead poles or underground street lines

Individual connection to homes

Solar Energy Collection

DC Power Conversion

Energy Storage System

Li-ion or Flow Battery

(anywhere on site)

Step-up Transformer

Distribution Substation

Low Voltage Distribution Lines

Distributes to residential buildings

Voltage: 415V/240V

Capacity: 800 kW

Daily Generation: ~764.4 kWh

- Seasonal Water Stream (Ephemeral Source) Activated during rainy season Natural flow, mixed with sediment
- Tapping via low-impact channel
- Diversion Inlet Structure Coarse screen (bamboo/mesh filter)
- Small stone check dam
- **Gravity Runoff Channel** Earth or stone-lined Follows natural slope
- Planted edges to reduce erosion
- Main Rainwater Storage Reservoir Sedimentation Basin Secondary Filtration Unit (sand layer)
- Gravity-Fed Distribution Network

Community & Household Use

- = 100 ltrs (Approx.) Water requirement per person per day Total no. of Household = 67
- Assuming 5 persons in a house, total persons = 335 For 355 people, water required (domestic) per day = 335 X 100 ltrs
- Total water requirement for half-year (dry season) = 33500 ltrs X 180
 - = 6,030,000 ltrs
- Total Solar panel area (proposed) = 1092 sq.mTotal Paved area (proposed) = 5400 sq.m (approx.) Annual Rainfall Marou Village (approx.) = 118 mm
- Total Rainwater can be collected from the proposal = (1092+5400) X 0.118 X 0.85(run-off coefficient)
- X 1000 ltrs = 651,147.6 ltrs / year

10.8% of the requirement is met by the site rainwater harvesting.

Total capacity of reservoir = 1526.8 cu.m X 1000ltrs = 1,526,800 ltrs

25.3% of the requirement can be stored (current proposal) in the reservoir for dry season. Keeping in mind, the cost involved we limited it for 1/4th of the requirement.

Incase, more storage required by the village, there is a huge provision for expansion, as we are going for geo-textile layer for storage, rather than any concrete filling. It can be expanded at any time, as per need.

-18.000-Depth 9M (Hemispherical Shape)

Overflow Outlet Pipe

Over flow outlet pipe

Inlet Pipe

9.000

SECTION