The weaving pattern of the graphene net is inspired by traditional aboriginal textile art techniques.

Akin to weather balloons, the helium filled main balloon acts as the primary support for the canopy. With an internal light source, the balloons illuminate the canopy at night.

The graphene net collects electrically charged ions from the atmosphere and transfers the electricity to storage facility on the ground.

The wires are embedded in the cables and travels underground via the anchor points.

The module becomes more effective in harvesting ions with higher altitude. The community can choose to release more helium balloons to raise the height of each module.

Annual kWh Energy Calculation

\[
0.077 \text{ kW/m}^2 \times 14796 \text{ m}^2 \times 24 \times 365 = 9,980,200 \text{ kWh}
\]

Meeniyaj Djeembana uses ion harvesting technology that generates clean renewable electricity from atmospheric ions. Pioneered by Ion Power Group, ion harvesting utilizes patented conductive material to collect electrically charged ions from the atmosphere. The electrical charge is then stored in a capacitor bank to be used for various uses. Ion harvesting does not need any fossil fuels and is truly renewable as the neutralized ions can be charged again once it is released back into the atmosphere.

Graphene is used in Ion Power Groups’ prototype of the ion collector for its superior conductivity. As atmospheric conductivity increases with height, it is more effective to position the graphene collector at a higher altitude.