The printed hexagonal OPV modules are laminated between clear plastic sheets and attached to a delicate steel net, which acts as both structural support and electrical conductor for the energy generated. The OPV module itself is semi-transparent with a outer transparent frame that connects to the output wires.

LED light modules light up at night as people touch the sensor on the frame to initiate the performance of the solar panel. The frame is made from carbon fiber materials to receive its best light, weight, and strength. The touch sensor technology is installed into the surface of the frame and allows it to switch on the performance shown by the solar module in daytime. The touch sensor is computerized by the computer to perform solar movement as a way to interact with people.

The light sensor installed on the top of the frame tracks the angle of the sun. It sends the data to the computer system, and back to the rotor that rotates the frame at 30 degrees every hour. The rotation is made to move 360 degrees around of 12 hours/year.

The wheel gear at the top of the frame is connected to the rotor of the solar module. It was computerized in order to rotate left and right in following the curve tube as people touch the bottom of the frame at night time.

The motor is installed in the underground that connects to the frame on the ground. It was computerized to receive data from light sensor, and generate a movement at 30 degree every one hour.

The battery storage is installed on the underground to store energy made by the solar panel. It can be used to power the LED lighting and the gears to move the triangular solar cells.

The inverter system is used to convert the DC current into AC current for each device is needed and the amount it takes. The computer system is used to calculate and process the movement of the motor, and used to computer the performances of the solar panel.

Earth experiences 1000 Watts/m² - Sunny Day
Solar Cells - Rated 15% power convert to energy

1 Solar Cell = 1000 Watts/m² x 0.15 = 150 Watts/m² per Solar Cell.
80 Solar Cells = 150 Watts/m² x 80 = 12000 Watts/m² per panel
1.01 Kilowatts per day x 365 days = 368.65 Kilowatts per year